ECE 2205: Electromagnetic Fields \& Waves - Lecture 17

Plane Electromagnetic Waves

Reflection of a Plane Wave at Oblique Incidence

Naymur Rahman
Lecturer
Department of ECE, KUET

Reflection of a Plane Wave at Oblique Incidence

Based on the general preliminaries on oblique incidence, two special cases will be considered:
A. Parallel (P) Polarization: \mathbf{E} field parallel to the plane of incidence.
B. Perpendicular (S) Polarization: \mathbf{E} field perpendicular to the plane of incidence.

Parallel Polarization

Figure 1: Oblique incidence with \mathbf{E} parallel to the plane of incidence.

Figure 1, where the \mathbf{E} field lies in the $x z$-plane, the plane of incidence, illustrates the case of parallel polarization. In medium 1, we have both incident and reflected fields given by

$$
\begin{align*}
& \mathbf{E}_{i s}=E_{i o}\left(\cos \theta_{i} \mathbf{a}_{x}-\sin \theta_{i} \mathbf{a}_{z}\right) e^{-j \beta_{1}\left(x \sin \theta_{i}+z \cos \theta_{i}\right)} \tag{1a}\\
& \mathbf{H}_{i s}=\frac{E_{i o}}{\eta_{1}} e^{-j \beta_{1}\left(x \sin \theta_{i}+z \cos \theta_{i}\right)} \mathbf{a}_{y} \tag{1b}\\
& \mathbf{E}_{r s}=E_{r o}\left(\cos \theta_{r} \mathbf{a}_{x}+\sin \theta_{r} \mathbf{a}_{z}\right) e^{-j \beta_{1}\left(x \sin \theta_{r}-z \cos \theta_{r}\right)} \tag{1c}\\
& \mathbf{H}_{r s}=-\frac{E_{r o}}{\eta_{1}} e^{-j \beta_{1}\left(x \sin \theta_{r}-z \cos \theta_{r}\right)} \mathbf{a}_{y} \tag{1d}
\end{align*}
$$

where $\beta_{1}=\omega \sqrt{\mu_{1} \varepsilon_{1}}$. Notice carefully how we arrive at each field component.
Once \mathbf{k} is known, we define \mathbf{E}_{s} such that $\nabla \cdot \mathbf{E}_{S}=0$ or $\mathbf{k} \cdot \mathbf{E}_{S}=0$ and then \mathbf{H}_{S} is obtained from $\mathbf{H}_{S}=\frac{\mathbf{k}}{\omega \mu} \times \mathbf{E}_{S}=\mathbf{a}_{k} \times \frac{E}{\eta}$.

The transmitted fields exist in medium 2 and are given by

$$
\mathbf{E}_{t s}=E_{t o}\left(\cos \theta_{t} \mathbf{a}_{x}-\sin \theta_{t} \mathbf{a}_{z}\right) e^{-j \beta_{2}\left(x \sin \theta_{t}+z \cos \theta_{t}\right)}
$$

$$
\begin{equation*}
\mathbf{H}_{t s}=\frac{E_{t o}}{\eta_{2}} e^{-j \beta_{2}\left(x \sin \theta_{t}+z \cos \theta_{t}\right)} \mathbf{a}_{y} \tag{2b}
\end{equation*}
$$

where $\beta_{2}=\omega \sqrt{\mu_{2} \varepsilon_{2}}$

Requiring that $\theta_{r}=\theta_{i}$ and that the tangential components of \mathbf{E} and \mathbf{H} be continuous at the boundary $z=0$, we obtain

$$
\begin{align*}
\left(E_{i o}+E_{r o}\right) \cos \theta_{i} & =E_{t o} \cos \theta_{t} \tag{3a}\\
\frac{1}{\eta_{1}}\left(E_{i o}-E_{r o}\right) & =\frac{1}{\eta_{2}} E_{t o} \tag{3b}
\end{align*}
$$

Expressing $E_{r o}$ and $E_{t o}$ in terms of $E_{i o}$, we obtain

$$
\begin{equation*}
\Gamma_{\|}=\frac{E_{r o}}{E_{i o}}=\frac{\eta_{2} \cos \theta_{t}-\eta_{1} \cos \theta_{i}}{\eta_{2} \cos \theta_{t}+\eta_{1} \cos \theta_{i}} \tag{4a}
\end{equation*}
$$

or

$$
\begin{equation*}
E_{r o}=\Gamma_{\|} E_{i o} \tag{4b}
\end{equation*}
$$

$$
\begin{equation*}
\tau_{\|}=\frac{E_{t o}}{E_{i o}}=\frac{2 \eta_{2} \cos \theta_{i}}{\eta_{2} \cos \theta_{t}+\eta_{1} \cos \theta_{i}} \tag{5a}
\end{equation*}
$$

or

$$
\begin{equation*}
E_{t o}=\tau_{\|} E_{i o} \tag{5b}
\end{equation*}
$$

Equations (4) and (5) are called Fresnel's equations. $\Gamma_{\|}$and $\tau_{\|}$are known as Fresnel coefficients. Note that the equations reduce to the equations obtained for normal incidence when $\theta_{i}=\theta_{t}=0$ as expected. Since θ_{i} and θ_{t} are related according to Snell's law of the form:

$$
\frac{\sin \theta_{t}}{\sin \theta_{i}}=\frac{k_{i}}{k_{t}}=\frac{u_{2}}{u_{1}}=\sqrt{\frac{\mu_{1} \varepsilon_{1}}{\mu_{2} \varepsilon_{2}}}
$$

eqs. (4) and (5) can be written in terms of θ_{i} by substituting

$$
\begin{equation*}
\cos \theta_{t}=\sqrt{1-\sin ^{2} \theta_{t}}=\sqrt{1-\left(u_{2} / u_{1}\right)^{2} \sin ^{2} \theta_{i}} \tag{6}
\end{equation*}
$$

From eqs. (4) and (5), it is easily shown that

$$
\begin{equation*}
1+\Gamma_{\|}=\tau_{\|}\left(\frac{\cos \theta_{t}}{\cos \theta_{i}}\right) \tag{7}
\end{equation*}
$$

From eq. (4a), it is evident that it is possible that $\Gamma_{\|}=0$ because the numerator is the difference of two terms. Under this condition, there is no reflection $\left(E_{r o}=0\right)$, and the incident angle at which this takes place is called the Brewster angle θ_{B}. The Brewster angle is also known as the polarizing angle because an arbitrarily polarized incident wave will be reflected with only the component of E perpendicular to the plane of incidence.

The Brewster angle is obtained by setting $\theta_{i}=\theta_{B_{\|}}$when $\Gamma_{\|}=0$ in eqs. (4) that is,

$$
\eta_{2} \cos \theta_{t}=\eta_{1} \cos \theta_{B_{\|}}
$$

or

$$
\eta_{2}^{2}\left(1-\sin ^{2} \theta_{t}\right)=\eta_{1}^{2}\left(1-\sin ^{2} \theta_{B_{\|}}\right)
$$

$$
\begin{equation*}
\sin ^{2} \theta_{B_{\|}}=\frac{1-\mu_{2} \varepsilon_{1} / \mu_{1} \varepsilon_{2}}{1-\left(\varepsilon_{1} / \varepsilon_{2}\right)^{2}} \tag{8}
\end{equation*}
$$

It is of practical value to consider the case when the dielectric media are not only lossless but nonmagnetic as well-that is, $\mu_{1}=\mu_{2}=\mu_{0}$. For this situation, eq. (8) becomes

$$
\begin{equation*}
\sin ^{2} \theta_{B_{\|}}=\frac{1}{1+\varepsilon_{1} / \varepsilon_{2}} \rightarrow \sin \theta_{B_{\|}}=\sqrt{\frac{\varepsilon_{2}}{\varepsilon_{1}+\varepsilon_{2}}} \tag{9}
\end{equation*}
$$

showing that there is a Brewster angle for any combination of ε_{1} and ε_{2}.

Perpendicular Polarization

When the E field is perpendicular to the plane of incidence (the $x z$-plane) as shown in Figure 2, we have perpendicular polarization. This may also be viewed as the case in which the \mathbf{H} field is parallel to the plane of incidence.

Figure 2: Oblique incidence with \mathbf{E} perpendicular to the plane of incidence.

The incident and reflected fields in medium 1 are given by

$$
\begin{align*}
& \mathbf{E}_{i s}=E_{i o} e^{-j \beta_{1}\left(x \sin \theta_{i}+z \cos \theta_{i}\right)} \mathbf{a}_{y} \tag{11a}\\
& \mathbf{H}_{i s}=\frac{E_{i o}}{\eta_{1}}\left(-\cos \theta_{i} \mathbf{a}_{x}+\sin \theta_{i} \mathbf{a}_{z}\right) e^{-j \beta_{1}\left(x \sin \theta_{i}+z \cos \theta_{i}\right)} \tag{11b}\\
& \mathbf{E}_{r s}=E_{r o} e^{-j \beta_{1}\left(x \sin \theta_{r}-z \cos \theta_{r}\right)} \mathbf{a}_{y} \\
& \mathbf{H}_{r s}=\frac{E_{r o}}{\eta_{1}}\left(\cos \theta_{r} \mathbf{a}_{x}+\sin \theta_{r} \mathbf{a}_{z}\right) e^{-j \beta_{1}\left(x \sin \theta_{r}-z \cos \theta_{r}\right)} \tag{12b}
\end{align*}
$$

while the transmitted fields in medium 2 are given by

$$
\begin{align*}
& \mathbf{E}_{t s}=E_{t o} e^{-j \beta_{2}\left(x \sin \theta_{t}+z \cos \theta_{t}\right)} \mathbf{a}_{y} \tag{13a}\\
& \mathbf{H}_{t s}=\frac{E_{t o}}{\eta_{2}}\left(-\cos \theta_{t} \mathbf{a}_{x}+\sin \theta_{t} \mathbf{a}_{z}\right) e^{-j \beta_{2}\left(x \sin \theta_{t}+z \cos \theta_{t}\right)} \tag{13b}
\end{align*}
$$

Notice that in defining the field components in eqs. (11) to (13), Maxwell's equations are always satisfied. Again, requiring that the tangential components of \mathbf{E} and \mathbf{H} be continuous at

$$
\begin{equation*}
z=0 \text { and setting } \theta_{r} \text { equal to } \theta_{i} \text {, we get } \quad E_{i o}+E_{r o}=E_{t o} \tag{14a}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{\eta_{1}}\left(E_{i o}-E_{r o}\right) \cos \theta_{i}=\frac{1}{\eta_{2}} E_{t o} \cos \theta_{t} \tag{14b}
\end{equation*}
$$

Expressing $E_{r o}$ and $E_{t o}$ in terms of $E_{i o}$ leads to

$$
\begin{equation*}
\Gamma_{\perp}=\frac{E_{r o}}{E_{i o}}=\frac{\eta_{2} \cos \theta_{i}-\eta_{1} \cos \theta_{t}}{\eta_{2} \cos \theta_{i}+\eta_{1} \cos \theta_{t}} \tag{15a}
\end{equation*}
$$

$$
\begin{equation*}
\tau_{\perp}=\frac{E_{t o}}{E_{i o}}=\frac{2 \eta_{2} \cos \theta_{i}}{\eta_{2} \cos \theta_{i}+\eta_{1} \cos \theta_{t}} \tag{16a}
\end{equation*}
$$

$$
\begin{equation*}
E_{t o}=\tau_{\perp} E_{i o} \tag{16b}
\end{equation*}
$$

which are the Fresnel's equations for perpendicular polarization Γ_{\perp} and τ_{\perp} are known as Fresnel coefficients. From eqs. (15) and (16), it is easy to show that

$$
\begin{equation*}
1+\Gamma_{\perp}=\tau_{\perp} \tag{17}
\end{equation*}
$$

which is similar to the equation obtained for normal incidence. Also, when $\theta_{i}=\theta_{t}=0$, eqs. (15) and (16) reduces to the equations obtained for normal incidence.

For no reflection, $\Gamma_{\perp}=0$ (or $E_{r}=0$). This is the same as the case of total transmission $\left(\tau_{\perp}=1\right)$.
By replacing θ_{i} with the corresponding Brewster angle $\theta_{B_{\perp}}$, we obtain

$$
\begin{aligned}
\eta_{2} \cos \theta_{B_{\perp}} & =\eta_{1} \cos \theta_{t} \\
\eta_{2}^{2}\left(1-\sin ^{2} \theta_{B_{\perp}}\right) & =\eta_{1}^{2}\left(1-\sin ^{2} \theta_{t}\right)
\end{aligned}
$$

Incorporating the Snell's law for refraction yields

$$
\begin{equation*}
\sin ^{2} \theta_{B_{\perp}}=\frac{1-\mu_{1} \varepsilon_{2} / \mu_{2} \varepsilon_{1}}{1-\left(\mu_{1} / \mu_{2}\right)^{2}} \tag{18}
\end{equation*}
$$

Note that for nonmagnetic media $\left(\mu_{1}=\mu_{2}=\mu_{0}\right), \sin ^{2} \theta_{B_{\perp}} \rightarrow \infty$ in eq. (18), so $\theta_{B_{\perp}}$ does not exist because the sine of an angle is never greater than unity. Also if $\mu_{1} \neq \mu_{2}$ and $\varepsilon_{1}=\varepsilon_{2}$, eq. (18) reduces to

$$
\begin{equation*}
\sin \theta_{B_{\perp}}=\sqrt{\frac{\mu_{2}}{\mu_{1}+\mu_{2}}} \quad \text { or } \quad \quad \tan \theta_{B_{\perp}}=\sqrt{\frac{\mu_{2}}{\mu_{1}}} \tag{19}
\end{equation*}
$$

Although this situation is theoretically possible, it rarely occurs in practice.
Example: 10.11
$n_{1}=1, n_{2}=1.5$

> Q-1: Define S-polarization, P-polarization and Brewster's angle?
$>$ Q-2:Mathematically describe the differences in the appearance of reflection characteristics for Spolarized and P -polarized electromagnetic waves in the figure mentioned above.
> Q-3: Determine the Brewster's angle for the P-polarized case.

References

1. "Elements of Electromagnetics" - Matthew N. O. Sadiku 7th Edition (Chapter 10)
