ECE 2205: Electromagnetic Fields & Waves - Lecture 17

Plane Electromagnetic Waves

Reflection of a Plane Wave at Oblique Incidence

Naymur Rahman Lecturer Department of ECE, KUET

Reflection of a Plane Wave at Oblique Incidence

Based on the general preliminaries on oblique incidence, two special cases will be considered:

A. Parallel (P) Polarization: E field parallel to the plane of incidence.

B. Perpendicular (S) Polarization: E field perpendicular to the plane of incidence.

Parallel Polarization

Figure 1: Oblique incidence with **E** parallel to the plane of incidence.

Figure 1, where the \mathbf{E} field lies in the *xz*-plane, the plane of incidence, illustrates the case of parallel polarization. In medium 1, we have both incident and reflected fields given by

$$\mathbf{E}_{is} = E_{io}(\cos\theta_i \, \mathbf{a}_x - \sin\theta_i \, \mathbf{a}_z) \, e^{-j\beta_1(x\sin\theta_i + z\cos\theta_i)}$$
(1a)

$$\mathbf{H}_{is} = \frac{E_{io}}{\eta_1} e^{-j\beta_1 (x\sin\theta_i + z\cos\theta_i)} \mathbf{a}_y$$
(1b)

$$\mathbf{E}_{rs} = E_{ro}(\cos\theta_r \,\mathbf{a}_x + \sin\theta_r \,\mathbf{a}_z) \, e^{-j\beta_1(x\sin\theta_r - z\cos\theta_r)}$$

$$\mathbf{H}_{rs} = -\frac{E_{ro}}{\eta_1} e^{-j\beta_1(x\sin\theta_r - z\cos\theta_r)} \mathbf{a}_y$$

where $\beta_1 = \omega \sqrt{\mu_1 \varepsilon_1}$. Notice carefully how we arrive at each field component.

Once **k** is known, we define \mathbf{E}_s such that $\nabla \cdot \mathbf{E}_S = 0$ or $\mathbf{k} \cdot \mathbf{E}_S = 0$ and then \mathbf{H}_S is obtained from $\mathbf{H}_S = \frac{\mathbf{k}}{\omega \mu} \times \mathbf{E}_S = \mathbf{a}_k \times \frac{E}{\eta}$.

The transmitted fields exist in medium 2 and are given by

$$\mathbf{E}_{ts} = E_{to}(\cos\theta_t \, \mathbf{a}_x - \sin\theta_t \, \mathbf{a}_z) \, e^{-j\beta_2(x\sin\theta_t + z\cos\theta_t)}$$

(2b)

$$\mathbf{H}_{ts} = \frac{E_{to}}{\eta_2} e^{-j\beta_2(x\sin\theta_t + z\cos\theta_t)} \mathbf{a}_y$$

where $\beta_2 = \omega \sqrt{\mu_2 \varepsilon_2}$

Requiring that $\theta_r = \theta_i$ and that the tangential components of **E** and **H** be continuous at the boundary z = 0, we obtain

$$(E_{io} + E_{ro})\cos\theta_i = E_{to}\cos\theta_t \tag{3a}$$

$$\frac{1}{\eta_1} \left(E_{io} - E_{ro} \right) = \frac{1}{\eta_2} E_{to} \tag{3b}$$

Expressing E_{ro} and E_{to} in terms of E_{io} , we obtain

$$\Gamma_{\parallel} = \frac{E_{ro}}{E_{io}} = \frac{\eta_2 \cos \theta_t - \eta_1 \cos \theta_i}{\eta_2 \cos \theta_t + \eta_1 \cos \theta_i}$$
^(4a)

$$E_{ro} = \Gamma_{\parallel} E_{io} \tag{4b}$$

$$\tau_{\parallel} = \frac{E_{to}}{E_{io}} = \frac{2\eta_2 \cos \theta_i}{\eta_2 \cos \theta_t + \eta_1 \cos \theta_i}$$
(5a)
$$\overline{E_{to} = \tau_{\parallel} E_{io}}$$
(5b)

Equations (4) and (5) are called Fresnel's equations. Γ_{\parallel} and τ_{\parallel} are known as Fresnel coefficients. Note that the equations reduce to the equations obtained for normal incidence when $\theta_i = \theta_t = 0$ as expected. Since θ_i and θ_t are related according to Snell's law of the form:

or

$$\frac{\sin \theta_t}{\sin \theta_i} = \frac{k_i}{k_t} = \frac{u_2}{u_1} = \sqrt{\frac{\mu_1 \varepsilon_1}{\mu_2 \varepsilon_2}}$$

eqs. (4) and (5) can be written in terms of θ_i by substituting

$$\cos\theta_t = \sqrt{1 - \sin^2\theta_t} = \sqrt{1 - (u_2/u_1)^2 \sin^2\theta_i} \tag{6}$$

From eqs. (4) and (5), it is easily shown that

$$1 + \Gamma_{\parallel} = \tau_{\parallel} \left(\frac{\cos \theta_t}{\cos \theta_i} \right)$$
⁽⁷⁾

From eq. (4a), it is evident that it is possible that $\Gamma_{\parallel} = 0$ because the numerator is the difference of two terms. Under this condition, there is no reflection ($E_{ro} = 0$), and the incident angle at which this takes place is called the *Brewster angle* $\theta_{B_{\parallel}}$. The Brewster angle is also known as the polarizing angle because an arbitrarily polarized incident wave will be reflected with only the component of E perpendicular to the plane of incidence.

The Brewster angle is obtained by setting $\theta_i = \theta_{B_{\parallel}}$ when $\Gamma_{\parallel} = 0$ in eqs. (4) that is,

or

$$\eta_{2} \cos \theta_{t} = \eta_{1} \cos \theta_{B_{\parallel}}$$
$$\eta_{2}^{2} (1 - \sin^{2} \theta_{t}) = \eta_{1}^{2} (1 - \sin^{2} \theta_{B_{\parallel}})$$
$$\sin^{2} \theta_{B_{\parallel}} = \frac{1 - \mu_{2} \varepsilon_{1} / \mu_{1} \varepsilon_{2}}{1 - (\varepsilon_{1} / \varepsilon_{2})^{2}}$$
(8)

It is of practical value to consider the case when the dielectric media are not only lossless

but nonmagnetic as well—that is, $\mu_1 = \mu_2 = \mu_0$. For this situation, eq. (8) becomes

$$\sin^2 \theta_{B_{\parallel}} = \frac{1}{1 + \varepsilon_1 / \varepsilon_2} \to \sin \theta_{B_{\parallel}} = \sqrt{\frac{\varepsilon_2}{\varepsilon_1 + \varepsilon_2}}$$
(9)

Department of ECE, KUET

$$\tan \theta_{B_{\parallel}} = \sqrt{\frac{\varepsilon_2}{\varepsilon_1}} = \frac{n_2}{n_1}$$

or

showing that there is a Brewster angle for any combination of ε_1 and ε_2 .

Perpendicular Polarization

Figure 2: Oblique incidence with E perpendicular to the plane of incidence.

When the E field is perpendicular to the plane of incidence (the *xz*-plane) as shown in Figure 2, we have perpendicular polarization. This may also be viewed as the case in which the **H** field is parallel to the plane of incidence.

The incident and reflected fields in medium 1 are given by

$$\mathbf{E}_{is} = E_{io} e^{-j\beta_1 (x \sin \theta_i + z \cos \theta_i)} \mathbf{a}_y$$
(11a)

$$\mathbf{H}_{is} = \frac{E_{io}}{\eta_1} \left(-\cos\theta_i \, \mathbf{a}_x + \sin\theta_i \, \mathbf{a}_z \right) \, e^{-j\beta_1 \left(x \sin\theta_i + z \cos\theta_i \right)} \tag{11b}$$

$$\mathbf{E}_{rs} = E_{ro} e^{-j\beta_1 (x \sin \theta_r - z \cos \theta_r)} \mathbf{a}_y$$
(12a)

$$\mathbf{H}_{rs} = \frac{E_{ro}}{\eta_1} \left(\cos\theta_r \,\mathbf{a}_x + \sin\theta_r \,\mathbf{a}_z\right) \, e^{-j\beta_1 (x\sin\theta_r - z\cos\theta_r)} \tag{12b}$$

while the transmitted fields in medium 2 are given by

$$\mathbf{E}_{ts} = E_{to} e^{-j\beta_2 (x \sin \theta_t + z \cos \theta_t)} \mathbf{a}_y$$
(13a)

$$\mathbf{H}_{ts} = \frac{E_{to}}{\boldsymbol{\eta}_2} \left(-\cos\theta_t \, \mathbf{a}_x + \sin\theta_t \, \mathbf{a}_z \right) \, e^{-j\beta_2 \left(x\sin\theta_t + z\cos\theta_t\right)} \tag{13b}$$

Notice that in defining the field components in eqs. (11) to (13), Maxwell's equations are always satisfied. Again, requiring that the tangential components of **E** and **H** be continuous at z = 0 and setting θ_r equal to θ_i , we get $E_r + E_r = E_r$ (14a)

$$E_{io} + E_{ro} = E_{to} \tag{14a}$$

$$\frac{1}{\eta_1} (E_{io} - E_{ro}) \cos \theta_i = \frac{1}{\eta_2} E_{to} \cos \theta_t$$
(14b)

Department of ECE, KUET

Expressing E_{ro} and E_{to} in terms of E_{io} leads to

$$\Gamma_{\perp} = \frac{E_{ro}}{E_{io}} = \frac{\eta_2 \cos \theta_i - \eta_1 \cos \theta_t}{\eta_2 \cos \theta_i + \eta_1 \cos \theta_t}$$
(15a)
or
$$E_{ro} = \Gamma_{\perp} E_{io}$$
(15b)
and
$$\tau_{\perp} = \frac{E_{to}}{E_{io}} = \frac{2\eta_2 \cos \theta_i}{\eta_2 \cos \theta_i + \eta_1 \cos \theta_t}$$
(16a)
or
$$E_{to} = \tau_{\perp} E_{io}$$
(16b)

which are the *Fresnel's equations* for perpendicular polarization Γ_{\perp} and τ_{\perp} are known as Fresnel coefficients. From eqs. (15) and (16), it is easy to show that

$$1 + \Gamma_{\perp} = \tau_{\perp}$$

which is similar to the equation obtained for normal incidence. Also, when $\theta_i = \theta_t = 0$, eqs. (15) and (16) reduces to the equations obtained for normal incidence.

For no reflection, $\Gamma_{\perp} = 0$ (or $E_r = 0$). This is the same as the case of total transmission ($\tau_{\perp} = 1$). By replacing θ_i with the corresponding Brewster angle $\theta_{B_{\perp}}$, we obtain

$$\eta_2 \cos \theta_{B_\perp} = \eta_1 \cos \theta_t$$

 $\eta_2^2 (1 - \sin^2 \theta_{B_\perp}) = \eta_1^2 (1 - \sin^2 \theta_t)$

Incorporating the Snell's law for refraction yields

$$\sin^2 \theta_{B_{\perp}} = \frac{1 - \mu_1 \varepsilon_2 / \mu_2 \varepsilon_1}{1 - (\mu_1 / \mu_2)^2}$$
(18)

Note that for nonmagnetic media ($\mu_1 = \mu_2 = \mu_0$), $\sin^2 \theta_{B_\perp} \to \infty$ in eq. (18), so θ_{B_\perp} does not exist because the sine of an angle is never greater than unity. Also if $\mu_1 \neq \mu_2$ and $\varepsilon_1 = \varepsilon_2$, eq. (18) reduces to

$$\sin \theta_{B_{\perp}} = \sqrt{\frac{\mu_2}{\mu_1 + \mu_2}} \qquad \text{or} \qquad \left| \tan \theta_{B_{\perp}} = \sqrt{\frac{\mu_2}{\mu_1}} \right|$$

Although this situation is theoretically possible, it rarely occurs in practice.

*** Example:** 10.11

(19)

> Q-1: Define S-polarization, P-polarization and Brewster's angle?

- Q-2:Mathematically describe the differences in the appearance of reflection characteristics for Spolarized and P-polarized electromagnetic waves in the figure mentioned above.
- > Q-3: Determine the Brewster's angle for the P-polarized case.

References

1. "Elements of Electromagnetics" - Matthew N. O. Sadiku 7th Edition (Chapter 10)