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Abstract 

The main purpose of this dissertation is to study Monte Carlo (MC) and Quasi-Monte Carlo (QMC) methods for pricing financial 

derivatives. We estimate the Price of European as well as various path dependent options like Asian, Barrier and American options 

by using these methods. We also compute the numerical results by the above mentioned  methods and compare them  graphically as 

well with the help of the MATLAB Coding. 
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I. Introduction 

The Monte Carlo (MC) method and its deterministic 

version Quasi-Monte Carlo (QMC) method are popular 

numerical tools in pricing financial derivatives and risk 

management. Monte-Carlo method and Quasi Monte-Carlo 

method were both used in physics at the beginning, so most 

solutions were given by physicists. There had been a 

controversy about whether these solutions also applicable in 

finance and derivatives pricing. Corwin Joy
8
 (Corwin, 

1996) pointed out the disadvantage of Monte-Carlo and 

raised Quasi Monte-Carlo. They substituted random 

sequence with deterministic sequence which can improve 

convergent rate and have a deterministic error interval.
5
  

The MC method simulates the underlying model using 

random numbers, and estimates the expectation of the 

random variable by sample averages. The QMC method 

attempts to do the estimation similar to the MC method 

with one crucial difference that it uses the so-called low-

discrepancy sequences in simulation. These are specially 

designed number theoretic sequences for estimating 

integrals. For this reason, the QMC method is often called 

the deterministic version of the MC method. There are two 

advantages of using the QMC method: it provides 

deterministic convergence, as opposed to the stochastic 

convergence of MC method. Moreover, the QMC 

estimates converge to the true solution at the rate     

O((log N )
d
/N ), where N is sample size and d is the 

dimension of the problem whereas the MC convergence 

rate is O(N 
−1/2

). The QMC method has some drawbacks: 

first, using one low discrepancy sequence in simulation 

gives a single estimate for the integral, and there is no 

practical way of assessing the error of this estimate. The 

second drawback is due to the deterioration of low 

discrepancy sequences in high dimensions. The third main 

shortcoming is due to the lack of practical bounds for 

integration error in QMC methods. Therefore, more 

practical error bounds are needed in QMC integration.
5
 

Geometric Brownian motion is a standard model used in 

financial mathematics, and the MC method is often used 

to simulate this model. Generation of these paths requires 

the simulation of independent standard normal random 

variables at each time increment. Therefore, we need a 

good method to generate these standard normal random 

variables. We use  two well known methods; Inverse 

transformation and the Box-Muller methods for generating 

the standard normal random variables.
3
 

II. The Monte Carlo Method for Option Pricing 

Consider the problem of estimating an integral over the unit 

interval. We can represent it in the following form
1
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where, p is the uniform density. The basic Monte Carlo 

estimator is 
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and the Monte Carlo error can be approximated by the 

sample standard deviation of
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We assume that the underlying asset follows a Geometric 

Brownian motion where in a risk-neutral world, the drift 

term is equal to the risk free interest rate. In a continuous 

time notation, the stock price is:  

                                            (3) 

Where S is the stock price, r is the risk-free interest rate, σ 

is the volatility which we assumed to be a constant, and dz 

is a Wiener process. Here,         and ε follows the 

standard normal distribution with mean zero and variance 

of one. Therefore, for a discrete time system, a change in 

stock price becomes 

                                       

                                     √   (4) 

Thus       
  

 
         √   (5) 

which also follows a normal distribution, and represents a 

percentage change in stock return over a short time period 

  . Now we follow the procedure for Monte Carlo 

simulation and divide the lifespan of the stock into n short 
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intervals with length of ∆t, then by applying Ito’s  Lemma 

to the stock price process, we get: 
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By applying to discrete time notation, the above formula 

becomes: 
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Since ∆t represents short time interval, the change in stock 

price becomes: 

  (     )    (  )                                      
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Which eventually gives the path generating formula for the 

stock price by applying Monte Carlo simulation   

                                
(  

 

 
  )     √  

 (8) 

Where, St denotes the value of the stock at time t, ε 

represents a number randomly sampled from a normal 

distribution with zero mean and standard deviation equals 

to one and when the volatility is constant, the parameters 

µ and σ are also constant, which makes the above equation 

the true value of stocks, instead of an  approximation 

following  Geometric Brownian motion, which is then 

used to value the price of an European as well as various 

path dependent options by using Monte Carlo simulation. 

For this paper, the formula is encoded into MATLAB to 

create a series of random paths (Fig. 1) following 

Brownian motion.
4 

 

Fig. 1. Standard Construction of Brownian motion path 

III. Pseudorandom vs Quasi-Random Points 

The value of Monte Carlo integral highly depends on the 

choice of random number. The difference between quasi-

Monte Carlo and Monte Carlo is the way the random 

numbers are chosen. Quasi-Monte Carlo uses a low-

discrepancy sequence such as the Halton sequence, 

the Sobol sequence, whereas Monte Carlo uses a 

pseudorandom sequence. The advantage of using low-

discrepancy sequences is a faster rate of convergence. From 

Fig. 2, we see that Halton and Sobol sequence is more 

evenly distributed compared to Pseudorandom number. 

   
 (a) Pseudorandom Numbers (b) Sobol sequence 

 

(c) Halton sequence 

Fig. 2. Comparison: Random points vs Quasi-Random points 

(Sobol and Halton sequence). 

IV. The Quasi-Monte Carlo Method 

Consider the following d dimensional integral, 

∫  ( )  
 

    ) 
 

The QMC method approximates this integral with  

  ∫  ( )     ∑ (  )
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where,   , ...    are coming from a low discrepancy 

sequence instead of a pseudorandom numbers. 

V. MC and QMC Methods for  European Call Option 

Pricing 

We consider an European Call options with initial stock 

price S0 = 90, σ = 0.2; r = 0.05; n = 10,000. By varying K 

and T, we get Table 1 which shows that European call 

option price increases when time to maturity increases. For 

MC method, Antithetic variate gives better results than 

standard MC. For QMC method, both Halton and Sobol 

sequence gives the option price which is very close to BS 

option price. 

Fig. 3(a) shows the European call option price with MC, 

AMC and QMC method by using Halton and Sobol 

sequence. From this figure, we see that QMC method 

converges much more faster than MC method. 
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Table 1. European Call option pricing by MC and QMC 

Methods with S0 = 90, σ = 0.2, r = 0.05, n = 10, 

000 for different K and T. 

K  T   Exact            Monte Carlo      Quasi-Monte Carlo 

Standard AMC Halton   Sobol 

 

 

   90 

1     9.4055 9.1652 9.4655 9.4053 9.4048 

2    14.514 14.4594 14.5688 14.5138 14.5126 

3   18.8319 18.7706 18.7753 18.8317 18.8295 

4   22.6919 22.8713 22.9269 22.6920 22.6884 

5   26.2247 26.1451 26.1033 26.2250 26.2200 

 

 

 100 

1    5.0912 5.3314 5.2079 5.0917 5.0906 

2    9.9088 10.0278 9.9639 9.9091 9.9074 

3  14.1690 14.1451 14.2444 14.1698 14.1674 

4   18.0602 17.8771 18.0831 18.0606 18.0569 

5 21.6677 21.6358 21.5537 21.6682 21.6632 

 

 

 110 

1     2.5237 2.4919 2.5063 2.5243 2.5231 

2     6.5545 6.7856 6.5754 6.5554 6.5531 

3   10.4927 10.3730 10.6026 10.4937 10.4908 

4 14.2413 14.5854 14.2618 14.2423 14.2383 

5   17.7998 17.8581 17.8420 17.8008 17.7954 

 
(a) Comparison  of  MC and QMC  methods 

 
(b) Absolute error 

 
(c) Relative error 

Fig. 3. Comparison and error of MC and QMC methods for 

European Call option price. 

For higher number of simulations, both MC and QMC 

method converges to the BS option price. Fig. 3(b) shows 

the absolute error of MC and QMC method for European 

Call option pricing. As n increases, the absolute error of 

both MC and QMC method decreases. Here, QMC method 

gives the lower relative error than MC method. From Fig. 

3(c), we see that relative error of QMC method is very 

small compared with MC method. 

VI. Comparison Between MC and QMC Methods for 

Asian Option Pricing 

The following Table 2 shows the arithmetic average Asian 

call option price with Standard MC, AMC and QMC 

method by using Halton and Sobol sequence by using the 

parameter S0 =100; r =0.05; σ = 0.2; T = 1 and by varying 

K and m (Number of Steps). Here, we consider extended 

BS formula for Asian option pricing as standard.
2
 When 

number of steps is higher, QMC method with Halton 

sequence gives worse result whereas QMC method with 

Sobol sequence gives better result for any number of 

steps. 

Table 2. Asian option pricing by MC and QMC 

method with S0 = 100, r = 0.05, σ = 0.2, T = 1, 

n = 1,00, 000 for different K and m. 

  K    m Exact 

(BS) 

 MC          QMC 

 Standard AMC Halton    Sobol 

 

 

  90 

10  12.6298   12.5835 12.5470 12.545 12.5393 

20  12.6298   12.5766 12.5679 12.5684 12.5560 

50  12.6298   12.5812 12.5982 14.211 12.5324 

100 12.6298   12.6173 12.5921 14.312 12.542 

200 12.6298   12.5877 12.5986 14.0036 12.5534 

500 12.6298   12.5920 12.5969 13.5334 12.5990 

        

 

 

100 

10 5.7828     5.7038  5.6799 5.6628 5.6668 

20 5.7828     5.7232  5.7347 5.7076 5.7073 

50 5.7828     5.7464  5.7407 6.8855 5.7155 

100 5.7828     5.7540  5.7625 6.9535 5.7192 

200 5.7828     5.7630  5.7670 6.7308 5.7166 

500 5.7828     5.7540  5.7594 6.3628 5.7493 

 

 

 

110 

10 1.9711     1.9249  1.9262 1.9154 1.9215 

20 1.9711     1.9310  1.9308 1.9523 1.9539 

50 1.9711     1.9843  1.9794 2.5484 1.9542 

100 1.9711     1.9649  1.9834 2.5660 1.9608 

200 1.9723   1.9969  1.9820 2.4454 1.9612 

50 1.9114     1.9915  1.9932 2.2181 1.9769 

 
(a)  Comparison  of  MC and QMC methods 



4   Hossen and Hossain 

 
(b)   Absolute error 

 
(c) Relative error 

Fig. 4. Comparison and error of MC and QMC methods for 

arithmetic Asian call option price. 

Fig. 4(a) shows the arithmetic average asian call option 

price by using MC, AMC and QMC methods. For higher 

number of simulation, both MC and QMC methods gives 

similar result but QMC method converges faster than MC 

method. Fig. 4(b) and 4(c) shows the absolute error and 

relative error of MC and QMC methods for arithmetic 

average Asian call option. Here, QMC methods gives 

lower absolute as well as relative error compared to MC 

methods. 

VII. Barrier Option Pricing by MC and QMC Methods 

The following Table 3 shows the price of a Down-and-Out 

Barrier Call option with MC and QMC methods with K = 

100, r = 0.1, σ =0.3, T = 0.2  and by varying Initial Stock 

price S0 and Barrier level B by considering 100,000 

random paths. Here, we consider extended BS formula for 

barrier option pricing as standard.
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 From Table 3, we see 

that QMC methods (with Halton and Sobol sequence) 

gives better results compared to MC and AMC methods. 

Fig. 5(a) shows the convergence of MC and QMC methods 

towards Extended BS for Down-and-Out Barrier Call 

option pricing. As number of simulations increases, both 

MC and QMC method   gives option price which is very 

close to Extended BS price for Barrier option. The QMC 

method performed extremely well, as convergence is 

achieved faster and this was in connection to the use  of 

Sobol sequences. 

Table 3. Down and Out Barrier Call option pricing by 

MC and QMC methods with  K = 100, r = 0.1, 

σ = 0.3, T = 0.2 and varying S0  and B. 

   S0   B     Exact 

     (BS) 

    MC          QMC 

Standard    AMC Halton     Sobol 

  100 80     6.3425 6.3524 6.3325 6.3420 6.3232 

85     6.3076 6.3364 6.3169 6.3273 6.3084 

90     5.9772 6.1583 6.1399 6.1485 6.1339 

95     4.3975 5.1613 5.1411 5.1373 5.1206 

  105 80     9.6158 9.6275 9.5974 9.6104 9.5854 

85     9.6052 9.6234 9.5934 9.6060 9.5808 

90     9.4733 9.5581 9.5283 9.5423 9.5176 

95     8.6732 9.0875  9.0603 9.0681 9.0445 

  110 80     13.484 13.5006 13.4616 13.475   13.4442 

85     13.481 13.4996 13.4603 13.473   13.4433 

90     13.431 13.4768 13.4387 13.452   13.4185 

95     13.051 13.2736 13.2315 13.247   13.2195 

  115 80     17.793 17.8113 17.7680 17.787   17.7434 

85     17.792 17.8110 17.7677 17.787   17.7431 

90     17.774 17.8031 17.7599 17.778   17.7356 

95     17.604 17.715 17.6739 17.695   17.6451 

 
(a) Comparison of MC and QMC methods 

 
(b) Absolute error of MC and QMC methods 

 
(c) Relative error of MC and QMC methods 

Fig. 5. Comparison, absolute and relative error  of  MC and 

QMC methods for Barrier option price. 
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Fig. 5(a) shows the comparison between MC and QMC 

methods along with the Exact result obtained by using 

Black Scholes Option Pricing formula. Fig. 5(b) and 5(c) 

shows the absolute and relative error of MC and QMC 

methods for a Down-and-Out Barrier Call option pricing. 

The relative errors from both simulations are reducing with 

an increase in the number of simulations. The relative errors 

obtained using the QMC method are generally lesser when 

compared to that of MC method. 

VIII. Comparison Between MC and QMC Methods for 

American Put Option Pricing  

We consider a non dividend American put option with  

r=0.04; σ = 0.2; T =1; n =10,000. By varying S0 and K, we 

get Table 4 by using MC and QMC methods by considering 

Halton and Sobol sequence. 

Since we do not know the analytical solution of American 

option pricing, we compare the standard error (
 

√ 
) of MC 

and QMC methods which is the statistical convergence 

rate of the above mentioned method. From the following 

Table 4, we observe that for higher Strike Prices, both MC 

and QMC methods gives very similar price for American 

put Option. On the other hand, for smaller strike price, we 

observe some fluctuations between MC and QMC 

methods. 

Table 4. MC and QMC methods for American Put 

Option Pricing with r = 0.04, σ = 0.2, T = 1 for 

different S0 and K. 

 S0      K        MC 

 (Standard) 

   QMC 

(Halton) 

      QMC 

    (Sobol) 

 

80 

80 5.0521 4.4638 5.1541 

90 11.2444 10.8276 11.2763 

100 19.9902 19.9334 19.9550 

110 29.9208 29.9126 29.9075 

 

85 

80 3.3029  2.7160 3.3904 

90 8.0972 7.5011 8.2286 

100 15.5445 15.2388 15.4631 

110 24.9487 24.9114 24.9043 

 

90 

80 2.0735 1.6210 2.1534 

90 5.6836 5.0218 5.7984 

100 11.7457 11.2139 11.7958 

110 20.1291 19.9336 20.0162 

 

95 

80 1.2536 0.9415 1.3218 

90 3.8982 3.2332 4.0062 

100 8.6792 8.0148 8.8226 

110 15.8798 15.4734 15.8449 

Fig. 6(a) shows the price of a non-dividend american put 

options with MC (pseudorandom number) and QMC 

(Halton and Sobol sequence) methods.
6
 

As the number of simulations increases, the fluctuation of 

MC method decreases. For higher number of simulations, 

both MC and QMC gives the similar results. Fig. 6(b) 

shows the standard error(
 

√ 
) of MC and QMC methods for 

American put option pricing where   is the standard 

deviation and n is the number of Simulations. For large 

number of simulations, the standard error becomes very 

small for both MC and QMC methods. 

 
(a) Comparison of MC and QMC Method 

 
(b) Standard error of MC and QMC Methods 

Fig. 6. Comparison and Standard error of MC and  QMC 

methods for American option pricing. 

IX. Conclusion 

In many computational finance problems, asset prices are 

modeled using the geometric Brownian motion. The 

simulation of the geometric Brownian motion involves 

generation of uniform random numbers, sampling from the 

normal distribution and construction of the Brownian 

motion paths. We can easily estimate the price of European 

Options by BS Model. But, for pricing strong path 

dependent options, there is no other choice but to use 

Monte Carlo Simulation. We observe that the ordinary MC 

method underpriced the option in most of the cases, as can 

be seen in the high discrepancies of the simulated values in 

comparison to the exact prices. It was also observed that 

using the AMC method resulted in the reduction of variance 

estimate when compared to the independent simulations 

obtained from the standard MC method. This was made 

possible since the antithetic variables used are negatively 

correlated and thus, increasing one variable led to a 

simultaneous decrease in the other variable. Hence, the 

AMC method gave out a better and fairly accurate result 

when compared to the MC method. Furthermore, the rate of 

convergence is accelerated when the simulation nodes are 

chosen deterministically as observed by the use of low 

discrepancy sequences. Thus, the use of QMC method 

together with Halton and Sobol sequences resulted to a 

more efficient method for valuing complex derivative like 

Asian, Barrier and American options.  
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The Monte Carlo convergence rate is O(N 
−1/2

) whereas the 

quasi-Monte Carlo convergence rate is O((log N )
d
/N ), where 

N is sample size and d is the dimension of the problem. 

Finally, we can conclude that QMC techniques improve the 

efficiency in most of the cases because standard deviations 

were always lower for QMC than MC methods. For most of 

the cases, QMC has also the superior convergence rate 

compared to MC method. 
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