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ABSTRACT 

Rainfall data provide fundamental input for various water resources management applications such as 

design of hydraulic structures, water budget analysis, streamflow estimation, flood frequency analysis 

and flood forecasting. Hydrologists are often required to estimate areal average rainfall over the 

catchment and/or point rainfall values at ungauged locations from observed sample measurements at 

neighbouring locations. Conventionally, stochastic spatial interpolation methods such as kriging are 

the most commonly used methods for estimating missing point rainfall values at any desired locations 

based on the available recorded values at neighbouring gauges. However, traditional kriging offers a 

major weakness because it requires a priori definition of the mathematical function for the variogram 

model that represents spatial correlations among data points and thus significantly impacts the 

performance of the methods. The robustness of kriging methods heavily depends on how the 

variogram model is constructed. Another limitation of traditional kriging is that negative kriging 

weights are often obtained as a part of the solution for satisfying the requirement of unbiased 

constraints in the kriging algorithm. It is the variogram that determines the magnitudes of negative 

weights based on the degree of continuity of the variable. Since positive weights cannot be obtained 

based on the solutions of kriging algorithms in many cases and thereby positive estimates of desired 

variables (rainfall in this study) in target locations cannot be ensured in many hydrological 

applications. In such case, negative weights (when assigned to high rainfall values) lead to negative 

estimates of rainfall values at the target or base station, which does not make any physical sense. 

Therefore, in this study, a positive kriging approach is presented where negative kriging weights can 

be eliminated through a technique called ‘positive kriging’ in the current study. The proposed positive 

kriging confirms the estimation of positive weights in the traditional ordinary kriging and hence 

positive estimates in the target or base station. The approach is applied to estimate missing rainfall 

values at a rain gauge station (Faridpur station in this study) through spatial interpolation using the 

historical rainfall data from a network of sixteen raingauge stations for a case study area in 

Bangladesh. The results indicate that Gaussian variogram is identified as the best fitted variogram 

model and ordinary kriging with the Gaussian variogram model gives the best estimates of the 

missing rainfall at the base station. This study conclusively proves that the missing rainfall estimation 

through spatial interpolation by the proposed positive kriging approach could be a viable option to 

estimate missing rainfall data in the field of hydrology and water resource engineering.  
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1. INTRODUCTION 

Rainfall is the key climatic variable for most hydrologic analyses for the effective management of 

water resources systems. However, in practice, missing values frequently occur in rainfall data and the 

hydrologic analysis is thus hampered by the shortage of consecutive data (De Silva et al., 2007; 

Simolo et al., 2010). The presence of missing values in the rainfall data in different countries of the 

world is a common problem for data analysis. Rainfall data may be missing for various reasons such 

as loss of yearbooks, human errors, wars, fire accidents, occurrence of high floods, occasional 

interruptions of automatic stations, instrument malfunctions, and network reorganizations etc. (Simolo 

et al., 2010). 

 

In order to carry out the effective hydrologic analysis, it is essential to estimate the messing value of 

daily rainfall data. For this purpose, different authors have suggested suitable methods for estimating 

the missing values for specific countries or regions using several techniques. Because the performance 

of any method for estimating missing values generally depends on the nature of the missing 

mechanism, nature of consecutive occurrences of rainfall, nature of neighboring stations, other 

intrinsic characteristics of the climate variables, etc. (Little and Rubin, 1987). 

  

Conventionally, variance-dependent stochastic interpolation methods, belonging to the general family 

of kriging, have been widely applied in hydrological sciences for spatial interpolation of hydrologic 

variables such as rainfall. These methods are based on the principle of minimizing estimation 

variances at locations where no measurements are available (Adhikary et al., 2016). Kriging in 

various forms has been used for estimating missing rainfall data at ungauged locations from point 

measurements available at surrounding stations (Ashraf et al., 1997). Among the various kriging 

methods, ordinary kriging (OK) remains one of the most preferred stochastic interpolation methods, 

which has been adopted for estimating missing rainfall values at an ungauged location in a catchment 

or a region. The performance of OK is highly influenced by the variogram model that represents 

spatial correlations among data points. 

 

In general, OK does not make sure of getting positive weights and thereby positive estimates of target 

variable (rainfall in this case) through spatial interpolation. Negative weights can be obtained in OK 

as a part of the solution for satisfying the requirement of unbiasedness constraints of kriging algorithm 

(Isaaks and Srivastava, 1989). In case of OK based missing rainfall estimation, negative weights 

(when assigned to high rainfall values) may lead to the negative estimates of rainfall values at the 

target or base station, which does not make physical sense. Szidarovszky et al. (1987) and Deutsch 

(1996) suggest that negative kriging weights should be corrected if it is obtained as a part of the 

solution. Therefore, a positive kriging approach is presented in the current study where negative 

kriging weights can be eliminated through a technique called ‘positive kriging’. The proposed positive 

kriging confirms the estimation of positive weights in the traditional OK and hence positive estimates 

in the target or base station.  

2. POSITIVE KRIGING APPROACH 

Kriging, the best linear unbiased estimator, in geostatistics refers to a family of generalized least-

square regression methods (Isaaks and Srivastava, 1989; Webster and Oliver, 2007). It helps to 

estimate the unknown variable values at unobserved locations based on the observed known values at 

surrounding locations. The general expression of ordinary kriging (OK) to estimate missing value of 

variable Z in space is given by: 

 

𝑍𝑂𝐾
𝑚 (𝑥0) = ∑ 𝑤𝑖

𝑂𝐾𝑍(𝑥𝑖)

𝑛

𝑖=1

                                                                         (1) 

 

where, 𝑍𝑂𝐾
𝑚 (𝑥0) refers to the estimated missing value of variable Z (rainfall in this study) at desired 

location 𝑥0; 𝑤𝑖
𝑂𝐾 is the kriging weights associated with the observation at location 𝑥𝑖 with respect to 
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𝑥0; and 𝑛 indicates the number of observed data points. The kriging weights 𝑤𝑖
𝑂𝐾 mainly depend on 

the fitted variogram model. 

 

The unbiasedness condition in the kriging estimates is ensured by enforcing a constraint on the 

kriging weights that is expressed by: 

 

∑ 𝑤𝑖
𝑂𝐾 = 1

𝑛

𝑖=1

                                                                                            (2) 

 

However, the unbiasedness condition indicated in Eq. (2) cannot ensure of getting positive kriging 

weights in the solution of kriging algorithm. Szidarovszky et al. (1987) suggests that inclusion of 

an additional non-negative constraint for weights, 𝑤𝑖 (i.e., 𝑤𝑖 ≥ 0 where i = 1, 2, 3,…….., n) 

in the kriging process confirms the estimation of positive kriging weights. 

 

In this study, a variant of positive kriging technique (Teegavarapu, 2007; Adhikary et al., 2016) was 

adopted to restrict the kriging weights to non-negative values. The objective function was the 

difference between the observed and estimated rainfall values by the OK method (using the OK-

derived weights) over a given time period. The optimization approach used in the proposed positive 

kriging technique based on mathematical programming formulation can be expressed as: 

 

Minimize  

∑ [∑(𝑤𝑖𝑍𝑖
𝑗
)

𝑁

𝑖=1

− 𝑍𝑚
𝑗

]

2

                                                                            (3)

𝑛

𝑗=1

 

 

Subject to 

 

∑ 𝑤𝑖 = 1                                                                                                    (4)

𝑁

𝑖=1

 

 

𝑤𝑖 ≥ 0                                                                                                           (5) 

 

where 𝑍𝑚
𝑗

 is the observed rainfall value at the target or base station (where estimation is desired), 𝑍𝑖
𝑗
 

is the observed rainfall at individual stations, j, N is the number of stations excluding the base station, 

n is the number of days (i.e. the specific time period for which data used in individual stations, j).  

 

The objective function described by Eq. (3) minimizes the difference between the observed and 

kriging based estimates of rainfall values over a period of n days. The constraint expressed by Eq. (4) 

makes sure that the estimate is unbiased whereas the additional inequality constraint defined by Eq. 

(5) will ensure the computation of non-negative kriging weights. The optimization formulation 

expressed in Eqs. (3) - (5) was solved using the Microsoft Excel Solver with initial weights obtained 

by the traditional OK method. The solver uses a generalized reduced gradient (GRG) non-linear 

optimization algorithm for the optimal solution. 

 

The proposed ‘positive kriging’ approach is applied to estimate missing rainfall values at a rain gauge 

station (Faridpur station in this study) through spatial interpolation using the historical rainfall data 

from a network of sixteen raingauge stations for a case study area in Bangladesh, which is shown in 

Figure 1. As can be seen from the figure, the study area is located in the central part of Bangladesh 

and there are seventeen (17) rainfall stations operated by Bangladesh Meteorological Department 

(BMD) enclosed by the large circle. These 17 stations are considered for the analysis and missing 

rainfall estimation. Details of these rainfall stations are presented in Table 1. Among all these stations, 

Faridpur station is taken as a base station, where estimation of missing rainfall values will be carried 
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out using the known rainfall values of the remaining sixteen (16) rainfall stations. The base station can 

be defined as a station where it is assumed that rainfall data are missing but rainfall data are actually 

available in the location (Adhikary et al., 2016). In this way, the estimated rainfall using kriging 

technique and the observed rainfall data in the base station can be compared to evaluate the efficacy 

of the method.  

 

 
 

Figure 1: The case study area (enclosed by the large circle) showing the location of rainfall stations 

(Faridpur is the base station (enclosed by the small circle) at which missing rainfall is to be estimated) 
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Table 1: Details of raingauge station used in this study 

 

Sl. No. Station Name Latitude (Deg) Longitude (Deg) UTMX (m) UTMY (m) 

1 Barishal 22.75 90.33 225802.973 2518317.125 

2 Bhola 22.68 90.65 258556.565 2510006.493 

3 Bogra 24.85 89.37 739490.028 2750420.964 

4 Chandpur 23.27 90.70 264720.137 2575275.519 

5 Chuadanga 23.65 88.87 690733.691 2616726.444 

6 Comilla 23.43 91.18 314058.126 2592296.490 

7 Dhaka 23.77 90.38 232982.262 2631224.617 

8 Faridpur* 23.60 89.85 790847.540 2612839.729 

9 Ishurdi 24.13 89.05 708327.510 2670143.497 

10 Jessore 23.18 89.17 722125.849 2565102.189 

11 Khulna 22.78 89.53 759756.056 2521387.708 

12 Madaripur 23.17 90.18 211284.241 2565136.011 

13 Mongla 22.33 89.60 767814.674 2471663.874 

14 Mymensingh 24.72 90.43 240020.327 2736383.727 

15 Rajshahi 24.37 88.70 672427.673 2696247.395 

16 Satkhira 22.72 89.08 713631.854 2514022.525 

17 Tangail 24.25 89.92 796505.415 2685010.465 

Note: Faridpur* station is assumed as the base station in the current study, where missing rainfall 

estimation is to be done. 

3. ESTIMATION OF MISSING RAINFALL 

3.1  Variogram Modelling 

Daily rainfall records from 1980 to 2013 for all seventeen (17) rainfall stations (as shown in Figure 1) 

are collected from BMD, which are used for the analysis. Summary statistics of collected rainfall data 

are presented in Table 2. Based on the mean daily rainfall values obtained for all 17 stations, 

estimation of experimenal variogram is done. Initially, a variogram cloud is carried out and then the 

variogram cloud is averaged for different lag distances to obtain the experimental variogram. 

 

Table 2: Summary of statistics of collected daily rainfall data 

 

Sl. No. Station Name Mean Std. Dev. Skewness Kurtosis 

1 Barishal 5.698 15.219 5.112 39.924 

2 Bhola 6.208 16.602 5.056 38.674 

3 Bogra 4.803 14.330 5.697 49.015 

4 Chandpur 5.942 16.790 6.202 65.721 

5 Chuadanga 4.057 12.594 6.618 70.911 

6 Comilla 5.669 15.768 5.377 47.464 

7 Dhaka 5.704 15.809 5.560 54.226 

8 Faridpur 5.006 14.308 6.098 67.931 

9 Ishurdi 4.097 12.050 5.232 39.157 

10 Jessore 4.641 13.603 6.190 61.782 

11 Khulna 4.963 14.226 7.076 105.753 

12 Madaripur 5.396 15.007 5.073 36.572 

13 Mongla 5.272 14.071 4.737 31.419 

14 Mymensingh 6.196 16.725 5.342 43.926 

15 Rajshahi 3.983 12.358 5.971 54.760 

16 Satkhira 4.756 13.559 5.859 57.753 

17 Tangail 4.950 14.420 5.844 57.526 
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Finally, the experimental variogram is fitted to a modeled variogram. The most commonly used 

variogram model included exponential, Gaussian and spherical variogram model functions (Adhikary 

et al., 2016). They are used to fit the experimental variogram in order to obtain the variogram model. 

All the best fitted variogram models with the experimental variogram are shown in Figures 2.  

 

 
 

Figure 2: Experimental variogram and best fitted exponential, spherical and Gaussian variogram 

models for the mean daily rainfall data 

 

While fitting and finding the best fitted variogram models, the corresponding variogram parameters 

namely, sill, nugget and range are also calculated. Details of the variogram parameters are presented 

in Table 3. In order to fit the variogram model with the experimental variogram, minimizing the 

residual sum of squares (RSS) are considered as an objective function. The model which gives the 

lowest RSS value, is identified as the best fitted model. The variogram modelling and parameters 

estimation is carried out in the GS+ software platform. As can be seen from Table 3, the Gaussian 

variogram model gives the lowest RSS value and hence gives the best fitted variogra model. This is 

also justified from figure 2 and it is seen that the gaussian variogram best fits the first five points of 

the experimental variogram compared to the remaining variogram models. 

 

Table 3: Summary of variogram parameters of variogram models 

 

Variogram Model  Nugget (mm2)  Sill (mm2) Range (Km)  RSS  

Exponential variogram 0.0001  0.2532  282.000  0.0562  

Spherical variogram 0.0001  0.2332  198.300  0.0536  

Gaussian variogram 0.0001  0.2322  150.861  0.0526  
Note: RSS = Residual sum of squares 
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3.2  Estimation of Kriging Weights 

After estimating the variogram parameters and identifying all three variogram models including 

exponential, spherical and Gaussian variogram models, kriging weights are computed by solving the 

system of simultaneous linear equations in the kriging process. To accomplish this, a spreadsheet 

application is developed in the Microsoft Excel platform. The estimated kriging weights by different 

kriging methods including ordinary kriging with exponential variogram model, ordinary kriging with 

spherical variogram model, and ordinary kriging with Gaussian variogram model are shown in 

Figures 3.  

 

 
 

Figure 3: Estimated kriging weights with respect to the base station, rainfall station no. 8 (Faridpur 

station in this study) using different kriging methods 

 

It is seen from the figure that kriging weights obtained for some of the rainfall stations are negative, 

which should be made positive before missing rainfall estimation. Since there is no non-negativity 

constraints in the kriging algorithm, these negative kriging weights are obtained in order to maintain 

the unbiasedness constraints expressed in Eq. (2). This justifies the development of a new kriging 

technique, which is referred to as the postive kriging in the current study. In the positive kriging 

technique detailed in Section 2 and optimization formulation expressed in Eqs. (3) – (5), the 

inclusion of an additional non-negative constraint for weights, 𝑤𝑖  (i.e., 𝑤𝑖 ≥ 0 where i = 1, 2, 

3,…….., n) in the kriging process confirms the elimination of all negative kriging weights (as shown 

in Figure 3) and thereby ensures the estimation of positive kriging weights. These positive kriging 

weights will be used to estimate missing rainfall at the base or target station (Faridpur rainfall station 

in the current study). 
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3.3  Estimation of Missing Rainfall 

Now, the missing rainfall values at the base station (Faridpur station in this study) are estimated using 

the positive kriging weights obtained as a solution of the optimization formulation given in Eqs. (3) – 

(5). The conceptual framework for missing rainfall estimation is presented in Figure 4, where it is 

assumed that rainfall values are missing at the base station (rainfall station no. 8) although rainfall 

values are available for that station along with remaining sixteen (16)  surrounding rainfall stations. 

The reason is that in this way the estimated rainfall values by different kriging techniques can be 

compared with the observed rainfall values to check the efficiency of the different positive kriging 

techniques in missing rainfall estimation. 

 

 
 

Figure 4: Conceptual framework for missing rainfall estimation at the base station 

 

Now, the observed and estimated rainfall values using different kriging techniques are compared and 

different error indices are calculated including root mean squared error (RMSE), mean absolute error 

(MAE) and coefficient of determination (R), which are presented in Table 4. The results presented in 

Table 4 indicate that ordinary kriging with Gaussian variogram model gives the best estimation with 

the lowest error and the highest coefficient of determination. Therefore, ordinary kriging with 

Gaussian variogram model is identified as the best kriging technique for missing rainfall estimation at 

Faridpur station in this study. 

 

Table 4: Performance of different kriging methods for missing rainfall estimation 

 

Method of Estimation RMSE  MAE  R  

OK-Exponential variogram model  11.747  4.559  0.576  

OK-Spherical variogram model 11.775  4.581  0.579  

OK-Gaussian variogram model 11.637  4.538  0.591  
 

The estimated and observed rainfall values using different kriging techniques at Faridpur rainfall 

station is also plotted, which are shown in Figure 5. As can be seen from the figure, a reasonably good 
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agreement between the observed and the estimated rainfall values is obtained. This ultimately proves 

the efficacy of the kriging technique for estimating missing rainfall values at ungauged locations.  

 

 
 

Figure 5: Estimated and observed rainfall values at the base station (Faridpur station in this study) 

using different kriging methods 

4. CONCLUSIONS  

In this study, a new variant of kriging called the positive kriging is proposed and adopted to estimate 

missing rainfall data at the base or target station in a selected area in Bangladesh. Since the traditional 

kriging does not ensure of getting positive kriging weights, an additional non-negativity constraint has 

been included and an optimization formulation is developed to achieve the positive kriging weights. 

The positive kriging weights are used to estimate the missing rainfall values at the base station 

(Faridpur rainfall station in this study) based on the available rainfall values from sixteen rainfall 

stations located around the base station. From the experiment, it is obvious that Gaussian variogram is 

the best fitted variogram model and ordinary kriging (OK) with Gaussian variogram model gives the 

best estimates of the missing rainfall at the base station. This study conclusively proves that the 

missing rainfall estimation through spatial interpolation by kriging technique could be a viable option 

for missing data estimation in the field of hydrology and water resources engineering. 

 

 



 

5th International Conference on Civil Engineering for Sustainable Development (ICCESD 2020), Bangladesh 

 ICCESD-2020-4908-10 

REFERENCES 

Adhikary, S.K., Nitin M., & Yilmaz, A.G. (2016). Genetic programming-based ordinary kriging for 

spatial interpolation of rainfall. Journal of Hydrologic Engineering, 21(2), 04015062. DOI: 

10.1061/(ASCE)HE.1943-5584.0001300. 

Ashraf, M., Loftis. J. C., & Hubard, K. G. (1997). Application of geostatistics to evaluate partial 

weather station network. Agricultural and Forest Meteorology, 84(3-4), 255-271. 

De Silva, R.P., Dayawansa, N.D.K., & Ratnasiri, M.D. (2007). A comparison of methods used in 

estimating missing rainfall data. Journal of Agricultural Sciences – Sri Lanka, 3(2), 101–108. 

Deutsch, C. V. (1996). Correcting for negative weights in ordinary kriging. Computers & 

Geosciences, 22(7), 765-773. 

Isaaks, H. E., & Srivastava, R. M. (1989). An Introduction to Applied Geostatistics, Oxford University 

Press, New York, USA. 

Little, J.R.A., & Rubin, D.B. (1987). Statistical Analysis with Missing Data. Wiley, New York. 

Simolo, C., Brunetti, M., Maugeri, M., & Nanni, T. (2010). Improving estimation of missing values in 

daily precipitation series by a probability density function-preserving approach. International 

Journal of Climatology, 30: 1564–1576. 

Szidarovszky, F., Baafi, E. Y., & Kim, Y. C. (1987). Kriging without negative weights. Mathematical 

Geology, 19(6), 549-559. 

Teegavarapu, R. S. V. (2007). Use of universal function approximation in variance-dependent surface 

interpolation method: an application in hydrology. Journal of Hydrology, 332(1-2), 16-29. 

Webster, R., & Oliver, M. A. (2007). Geostatistics for Environmental Scientists (2nd Ed.), John Wiley 

& Sons, Chichester, UK. 


	*Corresponding Author

