SL | Course Code | Title | Credit | Pre-Requisite |
---|---|---|---|---|

1 | Ch 1131 | Chemistry | 3.00 | |

2 | Ch 1132 | Sessional on Chemistry | 0.75 | |

3 | Hum 1131 | Sociology and Engineering Ethics | 3.00 | |

4 | Math 1131 | Calculus and Geometry | 3.00 | |

5 | EEE 1131 | Electrical Circuits | 3.00 | |

6 | EEE 1132 | Sessional on Electrical Circuits | 1.50 | |

7 | MTE 1101 | Mechatronic Systems | 3.00 | |

8 | MTE 1102 | Sessional on Mechatronic Systems | 0.75 | |

9 | MTE 1100 | Engineering Graphics | 1.50 |

SL | Course Code | Title | Credit | Pre-Requisite |
---|---|---|---|---|

1 | Hum 1231 | Technical and Communicative English | 3.00 | |

2 | Hum 1232 | Sessional on Technical and Communicative English | 0.75 | |

3 | Ph 1231 | Physics | 3.00 | |

4 | Ph 1232 | Sessional on Physics | 0.75 | |

5 | Math 1231 | Vector, Matrix and Ordinary Differential Equation | 3.00 | |

6 | CSE 1231 | Computer Programming | 3.00 | |

7 | CSE 1232 | Sessional on Computer Programming | 1.50 | |

8 | ME 1231 | Manufacturing Processes | 3.00 | |

9 | ME 1232 | Sessional on Manufacturing Processes | 1.50 |

SL | Course Code | Title | Credit | Pre-Requisite |
---|---|---|---|---|

1 | Hum 2131 | Engineering Economics and Accounting | 3.00 | |

2 | Math 2131 | Fourier Analysis and Laplace Transform | 3.00 | |

3 | EE 2131 | Electronics | 3.00 | |

4 | EE 2132 | Sessional on Electronics | 1.50 | |

5 | ME 2131 | Engineering Mechanics | 3.00 | |

6 | ME 2132 | Sessional on Engineering Mechanics | 0.75 | |

7 | MTE 2105 | Sensors and Instrumentations | 3.00 | |

8 | MTE 2106 | Sessional on Sensors and Instrumentations | 1.50 | |

9 | MTE 2100 | CAD Practice | 1.50 |

SL | Course Code | Title | Credit | Pre-Requisite |
---|---|---|---|---|

1 | Math 2231 | Complex Variables and Harmonic Analysis | 3.00 | |

2 | EE 2231 | Signals and Linear Systems | 3.00 | |

3 | ME 2231 | Thermodynamics and Heat Transfer | 3.00 | |

4 | ME 2232 | Sessional on Thermodynamics and Heat Transfer | 0.75 | |

5 | MTE 2207 | Electro-Mechanical Systems | 3.00 | |

6 | MTE 2208 | Sessional on Electro-Mechanical Systems | 1.50 | |

7 | MTE 2201 | Control Systems | 3.00 | |

8 | MTE 2202 | Sessional on Control Systems | 1.50 | |

9 | MTE 2210 | Modeling and Simulation | 0.75 |

**Chemical Bonding:** Valence bond theory, Molecular orbital theory, Metallic bonding, Hydrogen bonding, Theory of resonance, Structures; Elements and compounds of Si and its relevant technologies.

**Solutions:** Types of solutions, Solubility and solution process, Colligative properties: Lowering of vapor pressure, Elevation of boiling point, Depression of freezing point, Osmosis, Osmotic pressure, Deduction of molecular formula & molecular weight from Raoult's Law.

**Phase Rule:** Understanding of phases, components, and degrees of freedom; the phase rule, phase diagram study of one component system.

**Electrochemistry and Corrosion:** Introduction to electrochemistry, Chemical corrosion, Corrosion of metals and alloys dry and wet environments, Mechanism of corrosion, Atmospheric and soil corrosion and their protective measures.

**Chemical Equilibrium:** Law of mass action and its application; Effect of pressure on chemical equilibrium; Le-Chateller's theorem and application; Solvent and ion exchange processes.

**Chemical Kinetics:** Monitoring the progress of a reaction, Rate laws and rate constants; Experimental determination of rate law, Order and molecularity of a chemical reaction, Rate laws for reaction approaching equilibrium, Temperature dependence of reaction of reaction rates; Elementary reaction, steady state approximation; Analyzing pre-equilibrium, Unimolecular reactions.

**Nuclear Chemistry:** Basic concepts of nuclear chemistry, Radiochemistry, Nuclear force, Nuclear reactions, Nuclear reactor, Application of nuclear chemistry.

**Introducing Sociology:** Definition, nature and scope of sociology; The socio-cultural context of the emergence of sociology; Sociological perspective- Functionalism, Conflict perspective and Symbolic interactionism, Sociological imagination; Importance of sociology for the student of Material Science and engineering.

**
Basic Concept of Sociology: **Society, Community, Institution, Association, Organization, Group, Kinship, Social Structure, Social stratification; Methods and Techniques of Research in Sociology; Scientific method, steps of scientific research; Methods and techniques of sociological research; Ethic of Research.

**Culture and Socialization:** Definition and elements of culture; Basic concepts of culture-cultural lag, cultural relativism, cultural hybridization, Ethnocentrism, Counter culture, Cultural shock; Definition and agencies of socialization; Theories of socialization; Impact of culture on socialization and personality development

**
Social Change and Social Problems:** Definition and agencies of social change; Social policy and planning; Industrialization Urbanization and Social pathology; Crime and Deviance; Ageing and society; Globalization and changing pattern of family and marriage; Sociological conceptualization of religion and role of religion in society.

**Engineering Ethics: **Engineering as a profession, code of ethics, rights, duties and responsibilities. Engineering and professionalism, the negative face of engineering ethics, the positive face of engineering ethics, utilitarian thinking, respect for persons honesty, morality, globalization and ethical issues. Human rights, cases of ethics.

**Calculus:** Differential Calculus: Limit, continuity and differentiability of functions of single and several variables, Rolle's theorem, Cauchy's Mean value theorem, Taylor's theorem in infinite forms. Differentiation of composite and implicit functions, higher order derivatives, Partial differentiation. Harmonic functions, Taylor's expansion of function of several variables, Maxima and Minima (Single and Several variables), Points of inflection, Tangent, Normal and Asymptotes, Curvature, Concavity and Convexity of curve

**Integral Calculus:** Fundamental theorem of integral calculus, Mean value theorems, evaluation of definite integrals - reduction formulae.

**Geometry:** Change of origin and rotation of axes, System of co-ordinates, distance between two points; section formula; Projection, direction cosines; Equations of planes and lines.

**DC Networks:** Kirchhoff’s laws, node voltage and mesh current methods, Delta-star and star-delta conversion, Superposition principle, Thevenin’s and Norton’s theorems.

**Single phase AC Circuits:** Single phase EMF generation, average and effective values of sinusoids, solution of R,L,C series circuits, the j operator, complex representation of impedances, phasor diagram, power factor, power in complex notation, solution of parallel and series, parallel circuits, power factor correction.

**Three Phase AC Circuits:** Three phase EMF generation, delta and wye connections, line and phase quantities, solution of three phase circuits, balanced supply voltage and balanced load, phasor diagram, measurement of power in three phase circuits, Three phase four wire circuits.

**Magnetic Circuits:** Ampere’s circuital law, B-H curve, solution of magnetic circuits, hysteresis and eddy current losses, relays, applications of magnetic force, resonance.

**Introduction:** Fundamentals of Mechatronics, Examples of different Mechatronic systems, Scope and applications of Mechatronics.

**Sensors and Transducers: **Introduction to sensors and transducers, classification of sensors, sensor terminologies, sensor characteristics, different types of mechanical and electrical sensors; Proximity sensors.

**Signal Conversion and Processing:** Basic principles of potentiometer, Wheatstone bridge, op-amps, signal conditioning and data acquisition.

**System Modeling and Control:** Introduction to signals and systems, Modeling of Mechanical, Electrical, Fluid and Thermal systems, Linearization of nonlinear systems, Rotational-translational systems, Electro-Mechanical systems and Hydraulic-Mechanical System. Basic components of Control system, Types of control system, System representation, System responses, Time constant, Measurement of system performance, Illustrative examples.

**Actuation Systems:** Introducing the Linear and rotary actuators, AC and DC motors, Solenoids, Stepper motor, Fluid power actuators and Smart actuators. Recent trends in Mechatronic systems.

**Introduction to Instrumentation: **Characteristics of instruments, Errors, Propagation of errors, Errors types, Reduction of errors.

Introduction, Drawing equipment and use of instruments, Graphical mathematics, Geometrical construction, Theory of projection, Orthographic projection, Oblique projection, Orthographic and Auxiliary projection from pictorial views, Scale, Dimensioning rules, Orthographic views, Isometric drawing, Auxiliary views, Perspective views, Sectional views, Development of objects, Practical application of descriptive geometry.

**Review of Basic Grammer:** Part of Speech, Sentence, Tense, Voice; International Phonetics Alphabet, Looking up a Dictionary entry; Vocabulary: Phrases anf Idioms, Prepositional Phrases, Analogy, Synonyms and Antonyms, Prefixes and Suffixes, Palindroms, Anagrams, Wh Questions, Notions and Functions, Transformation of Sentences. Reading Comprehension: Francis Bacon’s Essays: Of Studies, Of Beauty, Of Travel, Of Love, Of Marriage and Single Life; Short stories by Renowned Writers: A Rose for Emily by William Faulkner, Bachelor’s Complaint of the Behavior of Married People by Charles Lamb, A Dissertation Upon Roast Pig by Charles Lamb, The Gift of the Magi by O’ Henry.

**Techniques of Writing:** Essay/Paragraph; The Mode of Discourse-Exposition, Description, Narration, Argumentation (EDNA); Letter and Email Writing; Report Writing: Formal and Informal, Tender and Schedule, Quotation, APA Style Sheet, Product Description, Translation.

**Reading:** Kinds and Procedures; SQ3R Technique;

**Writing:** Kinds and Procedures.

**Listening: **Monologue, Dialogue and Group Conversation (Formal and Informal), Telephoning and Direction, Note Taking Skills.

**Speaking:** Basic Conversation, Job Interview, Seminar and paper Presentaion. Formal Speech, Telephoning, Difference between British and American English.

**Static Electricity:** Coulomb's law, Electric field, Electric flux and Gauss's law, Application of Gauss's law, Electric potential, Capacitors and Capacitance;

**Dynamic Electricity:** Current, Drift velocity, Ohm's law, Kirchoff's law, Wheatstone bridge principle, Shunt;

**Magnetic effect on electricity and magnetic induction:** Biot-Savert's law and its application, magneto-motive force, Ampere's law and its application; Faraday's laws of induction, Lenz's law, self-inductance and mutual inductance;

**Magnetism: **Magnetic dipole, Magnetic field, magnetic field intensity, flux, permeability, susceptibility, Classifications of magnetic materials, magnetic domain, hysteresis;

**Optical instruments:** Camera and photographic techniques, Compound microscope, Resolving power of a microscope, Telescope, Refracting astronomical telescope, Reflecting telescope.

**Waves and Oscillation:** Simple harmonic motion, Differential equation of simple harmonic motion, energy of S.H.M., Applications;

**Wave Motion:** progressive wave, stationary wave, energy of progressive and stationary wave, Doppler's effect;

**Semiconductor Physics: **Semiconductor, Intrinsic semiconductor, Extrinsic Semiconductor, Diodes, Conductivity of a Semiconductor, position of Fermi level, Characteristic of Diode, Rectifiers, Amplifiers and Transistors;

**LASER: **Fundamental process of LASER, Properties of LASER, Population inversion, 2-level, 3-level and 4-level LASER, Ruby LASER, Semiconductor LASER.

**Vector Analysis:** Linear dependence and independence vectors, Multiple product of vectors; Differentiation and integration of vectors together with elementary application; Gradient of a scalar function, Divergence and curl of a vector function and their physical significance, Line, surface and volume integrals; Divergence/Gauss’s theorem, Stoke’s theorem, Green’s theorem.

**Matrices:** Review of matrix Algebra; Transpose, Adjoint and inverse of a matrix; Rank and elementary transformations of matrices; Normal and canonical forms, Matrix polynomial, Quadratic forms.

**Ordinary Differential Equations:** Formation and classification of differential equations, First order differential equations-exact, linear and Bernoulli's form, second order differential equations with constant coefficients by various methods, Cauchy- Euler's equation, System of differential equations.

**Introduction: **Concept of Algorithms: Development of programming logic, Algorithm, Flow chart; Assembly level language and Machine level language, High level language, Compiler, interpreter, Source and Object programs.

**Programming with C/C++ Language:** Preliminaries, Program construction and data types, I/O statements, Control statements structures, Decision making such as if, else-if, nested else-if, switch, GoTo, Loops such as while, do-while, for, etc., Expressions, Function and its Calling procedure, Recursion, Arrays and pointer, Structure, Application of computer programming for solving Mechatronics Engineering problems.

**Introduction:** Definition, Classification of manufacturing processes.

**Casting:** Design of patterns, Properties of molding sand, Core making, Methods of Sand casting, Die casting, Centrifugal and Allied casting, Precision investment casting, Casting defects and remedies.

**Joining Processes: **Soldering, Brazing, Welding and using of electrodes, Conventional welding processes: Gas, Arc, TIG, MIG, Submerged, Resistance, Thermite, LASER, Electron beam etc.

**Metal Forming Processes: **Various hot and cold working process, Dies, Drawing, Forming and Blanking operations.

**Metal Removal Processes:** Chip formation and Tool design, Tool geometry, Chip breakers. Cutting forces, Metal cutting dynamometers, Economics of metal cutting, Tool geometry, Cost and life of tool.

**Different Machining Processes:** Cutting tools and their analyses in turning, Milling, Drilling, Shaping, Grinding, Broaching etc. Machine Tools: Types, Main parts, Power transmission, Drives and control systems. Introduction of Automation and CNC Machine tools, Unconventional Machining Processes, Fabrication process for PCB making.

**Processes for Plastic Products:** Injection molding, Compression molding, Blow molding, Transfer molding, Compounding, Extrusion, Vacuum forming, Thermo-forming etc.

**Engineering Economics: **Definition and Principle of Economics; Relation between Economics and Engineering.

**Micro Economics: **Theory of demand and supply and their elasticity's; Price determination; Marginal analysis; Production, production function, types of productivity; Internal and external economics and dis-economics.

**Macro Economics: **Savings, investment, national income analysis; Inflation; Causes and analysis of project appraisal; NPV, IRR and their application; Cost benefit analysis. Monetary policy, Fiscal policy; Planning in Bangladesh.

**Accounting:** Objectives and Importance of accounting; Accounting as an information system; Basic concepts of accounting; Accounts transaction, accounting procedure; Financial statement analysis and interpretation; Cost concepts and classification; Costing methods; Cost-volume-profit analysis; Budgetary control, Pay roll account.

**Fourier series:** Fourier series, Convergence of Fourier series, Fourier series with different period, Half Range Fourier series, Linearity, Scaling, frequency shifting and time shifting properties.

**Fourier Transform and its applications:** Fourier Transform and Self-reciprocity of Fourier Transform. Applications to boundary value problems.

**Z-Transform:** Discrete transform and definition of Z-transform, Properties, Stability, Causality, Region of convergence of Z-transform, Properties of Z-transform, Inverse Z-transform.

**Laplace Transform:** Definition and existence condition of Laplace transform. Properties of Laplace transform. Laplace Transform of elementary functions. Inverse Laplace transform and its properties. Solution of ordinary and partial differential equations using Laplace transform.

**P-N Junction as a Circuit Element:** Intrinsic and extrinsic semiconductors, n-type doping, p-type doping and compensation doping; Diffusion and conduction Equations, Temperature dependence of conductivity, Carrier concentration temperature dependence, Transition and diffusion capacitance; Operational principle of p-n junction diode, contact potential, current-voltage characteristics of a diode; Simplified DC and AC diode models, Dynamic resistance and capacitance.

**Diode Circuits:** Half wave and full wave rectifiers, Rectifiers with filter capacitor; Characteristics of a Zener diode, Zener shunt regulator, Clamping and Clipping circuits.

**Bipolar Junction Transistor (BJT):** Current components, BJT characteristics and regions of operation, BJT as an amplifier; Biasing the BJT for discrete circuits, small signal equivalent circuit models, BJT as a switch.

**Field Effect Transistor (FET) Family:** Structure and physical operation of JFET and MOSFET; Threshold voltage, Current-voltage characteristics of FET and MOSFET, single–stage MOS amplifiers, MOSFET as a switch.

**Electronic Circuit Design:** Operational Amplifiers (Op-Amp) and their gain, input and output impedances, Offset null adjustment, Frequency response and noise; Filters, Oscillators, Timers and Multi vibrators.

**Statics:** Fundamental concept and principle of Mechanics, Equilibrium of particles and rigid bodies; Analysis of structure: Trusses, Frames and Machines; Centroids and center of gravity of areas and volumes; Frictions; Moments of inertia of areas and masses.

**Kinematics:** Rectilinear and curvilinear motion of particles; Motion relative to frame in translation; Tangential, normal, radial and transverse components; General plane motion, motion about a fixed point; Absolute velocity and acceleration; Relative velocity and acceleration.

**Kinetics: **Newton's second law of motion; Linear and angular momentum; Radial and transverse components of motion; Principle of work and energy and its application; Potential energy, conservative forces; Conservation of energy and its applications; Principle of impulse and momentum; Direct and oblique central impact, Eccentric impact; Plane motion of rigid bodies; Equation of motion, Angular momentum and D'Alembert's principle; Principle of Impulse and momentum for the plane motion of a rigid body.

**Introduction:** Functional elements of a measurement system, Errors in measurement and its eliminations, Classification of instruments.

**Sensors: ** Selection of sensors and transducers; Sensor Evolution; Displacement sensors: LVDT, Ultrasonic sensor, Optical sensors; Force Sensor: Strain gauge, Piezo sensor and load cell sensor; Temperature Sensor: Thermocouple, RTD, Thermistors, Radiation pyrometry, Bimetallic thermometer; Gas pressure thermometer; Humidity sensor; Speed sensor, Magnetic level gauge, Accelerometer and Gyro, Synchro, Magnetometer, Tachometer, Rotameter, Chemical sensor, Thermal imaging, Finger print sensor, Smart sensors and MEMS.

**Instrumentation:** Basic principles of DC and AC signal conditioning, Instrumentation amplifier, Analog signal filters, Analog signal Preprocessing, Digital signal processing, A/D and D/A converters, Sampling, Sample and Hold circuits.

**Modular instrumentation:** VXI, PXI, Virtual instrumentation notions.
**Data Transmission and Telemetry:** Methods of data transmission, DC/AC telemetry system and digital data transmission, Recording and display devices, Data acquisition system and microprocessor applications in instrumentation.

Introduction to AutoCAD software, Practice of various commands of 2D and 3D drawing in AutoCAD, Drawing and dimensioning of a Machine Part using AutoCAD, Introduction to various Design Software: Solid Works/CATIA.

**Complex Variable: **General functions of a complex variable, Limit, Continuity and differentiability of complex functions and related theorems, Analyticity, Cauchy-Riemann equation, Harmonic and conjugate harmonic functions of complex variable; Line integral of a complex function, Cauchy's integral formula, Liouville's theorem, Taylor's and Laurent's theorem; Different kinds of singular points and their justifications; Residue, Cauchy's residue theorem; Contour integration; Conformal mapping with its application to engineering problems.

**Harmonic Analysis:** Finite transformation, Harmonic functions, Laplace equations, Spherical harmonic, Surface zonal harmonic, Gravitational potential due to spherical shell and sphere.

**Power Series Method:** Solution of differential equations in series; Bessel's functions and their properties, Legendre's polynomials and their properties. Application of Bessel functions especially in mechanics.

**Introduction to linear systems and signal classification:** Signals: classification, basic operation on signals, elementary signals, representation of signals using impulse function; Systems: classification, properties of Linear Time Invariant (LTI) systems: linearity, causality, time invariance, memory, stability, invertibility.

**Time domain analysis of LTI systems: Differential equations:** system representation, order of the system, solution techniques, zero state and zero input response, system properties; Impulse response: convolution integral, determination of system properties; State variable: basic concept, state equation and time domain solution.

**Analogous systems:** f-v and f-i analogy for different types of system.

**Frequency domain analysis of LTI systems:** Fourier series: properties, harmonic representation, system response, frequency response of LTI systems; Fourier transformation properties; System transfer function, system response and distortion-less systems; Applications of time and frequency domain analyses: solution of analog electrical and mechanical systems.

**Applications of Laplace transformation: **Solution of system equations, system transfer function, system stability and frequency response and application, superposition integral.

**Thermodynamics: **Definition of different thermodynamic terms; Equation of state; Various thermodynamic processes; Specific heats, Internal energy, Enthalpy; Thermodynamic cycles, Zeroth Law, First Law, Heat and work transfer in flow and non-flow processes, Steady flow energy equation, Second law and Entropy.

**Gas and Vapor Power Cycles:** Carnot cycle, Otto cycle, Diesel cycle, Dual cycle, Brayton cycle, and their applications; Rankine cycle, Reheat cycle, Regenerative cycle, Representation of various cycles on P-V and T-S planes, Cycle efficiency; Working principle of Boiler, IC Engines, Gas Turbines.

**Refrigeration and Air Conditioning:** Basic concepts of refrigeration and air conditioning systems, Applications, Working principle of Vapor compression and Vapor absorption refrigeration systems, Refrigerants.

**Heat Transfer:** Basic modes of Heat Transfer, Steady and Unsteady Heat conduction, Theory of thermal radiation, Electromagnetic spectrum, Plank's law, Wein's displacement law, Steffen-Boltzman equation, Concept of black body and gray body, Kirchoff's law; Basics of natural and forced convection; Basics of Heat exchangers.

**Electromechanical Energy Conversion Fundamentals:** Faraday's Law of Electromagnetic Induction, Fleming's Rule and Lenz's Law.

**Transformer: **Principles, equivalent circuit, single phase and three phase transformers, short circuit and open circuit tests.

**DC generator:** Construction, principle of operation, windings and armature reaction, performance evaluation and testing.

**DC motor: **Operation, types, speed-torque characteristics, starting and speed control.

**Induction Motor:** Theory of operation, equivalent circuit, slip, torque-speed characteristics, developed rotor power, starting, braking and speed control of single and three phase induction motors.

**Synchronous Machines: **Operation, excitation systems, equivalent circuit, effects of loading under different excitation conditions, V-curves, starting and method of synchronization.

**Servo Drives:** Operation of servo motors, motion control system, axis of motion, system power up, over travel, distance and position, homing, actuators.

**Special Machines: **Brushless DC motor, stepper motor, universal motor, electrostatic motor, Switched Reluctance motor.

**Introduction to Control System:** Conventional control system; Steady state response to step, ramp, and parabolic inputs; Transient response; Poles and zeros, frequency response from pole-zero diagram, Routh’s stability criterion; Block diagrams, canonical forms; Transfer functions and signal flow graph; System types; Root locus, frequency response, gain and phase margin; Phase lag and lead compensator design using root locus and bode diagram.

**Modern Control System:** Introduction, state variable analysis, controllability and observability, application of Eigen value, linear control system design by state feedback; Introduction to non-linear control.

**Controllers Design:** On-off, P, PI, PD and PID controllers, their applications in control system design; Position control system.

**Intelligent Control Systems:** Optimal control methods: LQR and LQG; Kalman Filtering; Robust control and Adaptive control approaches and their different forms such as Gain-scheduled control, Self-tuning and Model-reference adaptive systems; Internal stability, small gain theorem, H-infinity control, parameter estimation; Introduction to fuzzy logic with its control structure.

Mathematical Models, Mechanical, electrical, Fluid and Thermal system building blocks, Engineering systems, rotational-translational, electromechanical and hydraulic-mechanical systems, Modelling of dynamic systems. Modelling a system with MATLAB and simulate it by SIMULINK.